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4.7.5 Infilled discontinuities

(c) The shear stress--displacement curves of filled

discontinuities often have two portions, the first reflecting the

deformability of the filling materials before rock to rock

contact is made, and the second reflecting the deformability

and shear failure of rock asperities in contact.

(d) The shear strength of a filled discontinuity does not always

depend on the thickness of the filling. If the discontinuity

walls are flat and covered with a low-friction material, the

shear surface will be located at the filling-rock contact.

(e) Swelling clay is a dangerous filling material because it loses

strength on swelling and can develop high swelling

pressures if swelling is inhibited.



235

4.8 Models of discontinuity strength and deformation
4.8.1 The Coulomb friction, linear deformation model

The simplest coherent model of discontinuity deformation and

strength is the Coulomb friction, linear deformation model

illustrated in Figure 4.45.
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4.8.2 The Barton-Bandis model

The Barton-Bandis discontinuity closure model incorporates hyperbolic
loading and unloading curves (Figure 4.46a)
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4.8.2 The Barton-Bandis model

In which normal stress and closure, , are related by the

empirical expression課本有誤

where a and b are constants. The initial normal stiffness of the

joint, , is equal to the inverse of a and the maximum possible

closure, , is defined by the

asymptote a/b.

v

(4.35))/( vbavn 

niK

mv
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4.8.2 The Barton-Bandis model

Differentiation of equation 4.35 with respect to yields the
expression for normal stiffness

Bandis et al. (1985) present the empirical relations

where JCSo and JRCo are laboratory scale values, E0 is the initial
aperture of the discontinuity, and A, B, C and D are constants
which depend on the previous stress history.

v

 2)(1  nnimnnin KvKK 

D
m EJCSCJRCBAv )()( 000 

100.2)(02.0 000  JRCEJCSK ni
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4.8.2 The Barton-Bandis model

The Barton-Bandis model takes explicit account of more

features of discontinuity strength and deformation

behaviour than the elementary model discussed

in section 4.8.1. However, its practical application may

present some difficulties. In particular, the derivation of

relations for the mobilisation and degradation of surface

roughness from a piecewise linear graphical format

rather than from a well-behaved formal expression may

lead to some irregularities in numerical simulation of the

stress-displacement behaviour.
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4.8.3 The continuous-yielding joint model

The continuous-yielding joint model was designed

to provide a coherent and unified discontinuity

deformation and strength model, taking account of

non-Iinear compression, non-linearity and dilation in

shear, and a non-linear limiting shear strength

criterion. Details of the formulation of the model are

given by Cundall and Lemos (1988).
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4.8.3 The continuous-yielding joint model

The key elements of the model are that all shear displacement
at a discontinuity has a component of plastic (irreversible)
displacement, and all plastic displacement results in
progressive reduction in the mobilised friction angle. The
displacement relation is

where is an increment of shear displacement, is the
irreversible component of shear displacement and F is the
fraction that the current shear stress constitutes of the
limiting shear stress at the prevailing normal stress.

uFu p  )1(

u pu
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The progressive reduction in shear stress is represented by

where is the prevailing mobilised friction angle, is the
basic friction angle, and R is a parameter with the dimension of
length, related to joint roughness.

The response to normal loading is expressed incrementally as

where the normal stiffness is given by

n which and are model parameters.

P
mm u

R
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The shear stress and shear displacement increments are
related by

where the shear stiffness may also be taken to be a function of
normal stress, e.g.

in which , are further model parameters.

uFK s

s s

s
nssK 

4.8.3 The continuous-yielding joint model
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The determination of the global mechanical properties of a

large mass of discontinuous in situ rock remains one of the

most difficult problems in the field of rock mechanics.

The sets of discontinuities are mutually inclined at as shown

in the sketches in Figure 4.47.

4.9 Behaviour of discontinuous rock masses
4.9.1 Strength

45
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4.9 Behaviour of discontinuous rock masses
4.9.1 Strength
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A curve showing the variation of the peak principal stress

difference with the orientation angle, , may be constructed

for a given value of by

superimposing four times the appropriate curve in Figure 4.31

b with each curve displaced from its neighbour by on the

axis. Figure 4.47 shows the resulting rock mass strength

characteristics for three values of . In this case, failure

always takes place by slip on one of the discontinuities.

4.9 Behaviour of discontinuous rock masses
4.9.1 Strength

45



3



3
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4.8.3 The continuous-yielding joint model

The most completely developed of these empirical approaches is

that introduced by Hoek and Brown (1980) who proposed the

empirical rock mass strength criterion

Hoek and Brown (1980) showed that their criterion could also be

expressed in terms of shear strength, , and normal stress, ,

as

(4.36)
212
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Hoek and Brown (1988) proposed a revised set of relations
between Bieniawski's rock mass rating (RMR) and the parameters
m and s:

(4.38))
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100
exp(




RMR
m
m

i

)
6

100
exp(




RMR
s (4.39)

Disturbed rock masses

Undisturbed or interlocking rock masses

where mi is the value of m for the intact rock as given

in section 4.5.4.
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4.9 Behaviour of discontinuous rock masses
4.9.1 Strength
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Figure 4.49 shows an example of the application of Hoek and
Brown's criterion to a sandstone rock mass at the site of a
proposed underground excavation.Triaxial compression tests on
samples of intact sandstone gave the upper envelope with mi = 15.
Logging of the cores showed that the rock mass rating varied from
65 (good) to 44 (fair). For a sandstone rock mass in the
undisturbed or interlocked condition, equations 4.40 and 4.41 give
m = 4.298, s = 0.0205 for RMR = 65 and m = 2.030, s = 0.0020
for RMR = 44. These values, used in conjunction with a mean
value of = 35 MPa, give the estimated bounds to the in situ
rock mass strength shown in Figure 4.49.

4.9 Behaviour of discontinuous rock masses
4.9.1 Strength

c



251

4.9 Behaviour of discontinuous rock masses
4.9.1 Strength
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In the simplest case of a rock mass containing a
single set of parallel discontinuities, a set of
elastic constants for an equivalent transversely
isotropic continuum may be determined. For a
case analogous to that shown in Figure 2.10, let
the rock material be isotropic with elastic
constants E and v, let the discontiuities have
normal and shear stiffnesses Kn and Ks as
defined in section 4.7.5, and let the mean
discontinuity spacing be S.

4.9.2 Deformability
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By considering the deformations resulting from the

application of unit shear and normal stresses with

respect to the x,y plane in Figure 2.10, it is found

that the equivalent elastic constants required for

use in equation 2.42 are given by

4.9.2 Deformability
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If, for example, = 10 GPa, =0.20,

, and S = 0.5 m,

then = 4.17 GPa, = 10 GPa, =2.0 GPa,

= 0.20, = 0.04 and = 49.4 MPa.

4.9.2 Deformability

E

1v 2v
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Using a simple analytical model, Brady et al.
(1985) have demonstrated that, in this case:

(a) the loading-unloading cycle must

be accompanied by hysteresis; and

(b) it is only in the initial stage of

unloading (Figure 4.50) that inelastic

response is suppressed and the true

elastic response of the rock mass is

observed.

4.9.2 Deformability
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Bieniawski (1978) compiled values of in situ modulus of

deformation determined using a range of test methods at 15

different locations throughout the world. He found that for values

of rock mass rating, RMR, greater than about 55, the mean

deformation modulus, EM , measured in GPa, could be

approximated by the empirical equation

4.9.2 Deformability

(4.42)100)(2  RMREM
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Serafim and Pereira (1983) found that an improved fit to their

own and to Bieniawski's data, particularly in the range of EM

between 1 and 10 GPa, is given by the relation

4.9.2 Deformability

(4.43)40
10

10

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RMR

ME


