4.5.5 Yield criteria based on plasticity theory

More complex functions also include the third invariant of the
deviator stress tensor J; = $S,S; . For example, Desai and
Salami (1987) were able to obtain excellent fits to peak strength
~ (assumed synonymous with yield) and stress-strain data for a
sandstone, a granite and a dolomite using the yield function

a Jysy”
SN A
0 2

where o , f, m and n are material parameters and

a, is one unit of stress.
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random — isotropic
e.g. igneous and sedimentary rocks

planar — transversely isotropic
e.g. metamorphic and sedimentary rocks

linear — transversely isotropic
e.g. metamorphic rocks

3 orthogonal weakness —>orthotropic

180
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X :#zﬂ?%‘&[p'*"‘*’j 57 (87%14&)
[ﬁ’%'?ﬁ;@ﬁf' [ﬂ {13 (Strength anisotropy ) ? FJ[[EZ
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TABLE 4.1 Relationships Among Elastic Moduli E, G, K, »,A, M | sotropic Material

Shear Young’s Constrained Bulk Lame Poisson’s
Modulus, Modulus, Modulus, Modulus, Parameter,” @ Ratio,
G E M K A v
G(4G—E) GE G(E—-2G) E-2G
i, & “ ; < . 36—E 9G—3E. 3G—-E - 2G
G(3M —4G _ M-2G
B - T D e Ry
G, M G S M M—4G M=26 356
9GK iy - 26 3K—2G
G5 & g 3K+G s L = s 23K+ G)
G(3A +2G) 2G A
2G(1—v») 2G(1+v») 2Gy
Gty E 26(1+) T 12 3(1—2») 1—2» .
rx 3KE K(9K +3E) K(9K—3E) 3K—E
: 9K —-E 9K — E 9K — E 6K
E E(1—v») E vE
_E,P TSRO E e 4
2(1+») (1+»)(1—2») 3(1—2») (1+»)(1—2»)
. 3(K—=A) 9K(K—A) ] A
3(M—K) 9K(M—K ' - 3IK2M—1)+ M
KM ( ) (A ) 5 . 3K—M ( i
4 3K+ M | 2 3KEM+1)—M
3K(1—2») 3K(1—v») | 3Kv
3K(1 21’) _T!'P_ K 1+ 4

R T
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transver sely Isotropic

By = .o S S
1 ]’:'y' 2{1“1’1l

!dependént )

)
L SN WL, N - B
; (dependent)

» Fig. 3.14. Definition of elastic constants for the case of transverse isotropy and linear fa.brié
in terms of stresses and both normal and shear strains in a three-dimensional element. :
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.Fi& 3.15. Definition of the elastic constants in the case of orthotropy in terms of stresses
an

notmal! and shear strains in a three-dimensional element.
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4.6 Strength of anisotropic rock material in triaxial
compression

Because of some preferred orientation of the

' or , or the presence of or
the behaviour of many rocks is anisotropic. Because of
computational complexity and

the difficulty of determining the necessary elastic
constants, it is usual for only the simplest form of

anisotropy, transverse isotropy, to be used in design analyses.
Anisotropic strength criteria are also required for use in the

calculations.
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Figure 4.31 shows some measured variations in peak principal
stress difference with the angle of inclination of the major
principal stress to the plane of weakness.

s00 9= (2) Moretown Phyilite (b) Slate

275 MPa
210 MPa

| 1 ]

Maximum differential stress, oy — o3 (MPa)

0 30 60 90
(d) Green River Shale 2
600 -
170 MPa ——
100 MPa —
70 MPa -
35 MPa -
Figure 431 Variation of peak prin-
cipal stress difference with the angle
of inclination of the major principal a
stress to the plane of weakness, for —
the confining pressures indicated for 7 MPa
(a) a phyllite (afier Donath, 1972), 1 1 ]
(b-d) a slate and two shales (afier 30 &0 % 186

McLamore and Gray, 1967).
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oy slip on

4! fracture of rock plane of
material weakness
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Figure 432 (s) Transversely iso-
tropic specimen in iriaxial com-
pression: . (b) wvaristion of peak
sirength st consiant confining press-
ure with the angle of inclination of
the normal 10 the planc of weakness
o the compression axis ().

? s e e

o

4.6 Strength of anisotropic rock material in
triaxial compression

introduced an instructive analysis of
the case in which the rock contains well-defined,
parallel planes of weakness whose normals are
— inclined at an angle B to the major principal
stress direction as shown in Figure 4.32a. Each

has a limiting shear strength
defined by Coulomb's criterion

S=C,+o,tang, (4.28)
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4.6 Strength of anisotropic rock material in triaxial
compression

Slip on the plane of weakness (ab) will become incipient when
the shear stress on the plane, ¢ , becomes
, the shear strength, S . The stress

transformation equations give the normal and shear stresses on

ab as

o, slip on
4’ fracture of rock  plane of
material weakness

i
|
o 45+ —‘; d

B

Figure 432 (a) Transversely iso-
tropic specimen in Iriaxial com-
pression: - (b) wvariation of peak
sirength st constant confining press-
ure with the angle of inclination of
the normal 1o the plane of weakness
1o the compression axis (B).

()

2

T

1 1
o,=-(0,+03)+ E(Gl —0,)c0S2f
1 . (4.29)
B 5(61 —0,)sin2p
e /——f‘{ﬁ /

stresses.



S=C,+o,tang, (4.28)

4.6 Strength of anisotropic rock material in triaxial
compression

Substituting for 0, in equation. 4.28, putting s =7 and
rearranging, give the criterion for slip on the plane of weakness as

— — 2(CW + 63 tan ¢W)
L(Gl Os)s = (1-tan ¢, cot B)sin 23 (4.30)

The principal stress difference required to produce slip tends to
infinity as 8 —» 90°and as B — ¢, (5121 F)
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4.6 Strength of anisotropic rock material in triaxial
compression

By differentiation, it is found that the minimum strength occurs

when (4.30%F B #%55 » 241130 ”

2(c, +o,tan
| (0,-03)s = (Cy + 0 ¢.W) (4.30)
(1-tan¢, cot f)sin2p
P— Y tan 2 = —cot ¢,
| or when -
i T P
i = + ...
Bhd "

pam= \
B

Figure 432 (s) Transversely iso-

tropic specimen in triazial com-

pression: . (b) waristion of peak

sirength al consiant confining press-

ure with the angle of inclination of 190
the normal 10 the planc of weakness

o the compression axis (f).



The criterion for slip on the plane of weakness as

ﬂ (6,-0.). 2(c, +o,tang,)

N (1-tan¢, cot f)sin2p

2(c, +o,tang, )
(1-tang¢,cot B)sin2p

f = (61_63)5 =

T o
op

By partial differentiation
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2(c, +o,tang, )

f=(0,-0,), = (1-tan ¢, cot B)sin 23

of -2(c,+o,tang,)[(1-tang, cot B)sin28]
!'- B [(1-tan ¢, cot B)sin 23] -
Gives ol(1-tang, cot f)sn 28] _

op

2c0s2p +tang,(2sn2pB)=0

0

0

tan2p =—cotg,,

T P
'B_4+2 192



4.6 Strength of anisotropic rock material in triaxial
compression

For Intact Rock

2CCOS¢Y + o ,(1+Sng)
1-sng

—0, =

or

61=GéKp+2QJKp

(®)

@) slip on
4" fracture of rock  plane of
material weskness

45+ —

?‘_u__u..-..-u-.n.-—-.

L wr
2
B

Figure 432 (a) Transversely iso-
tropic gpecimen in triaxial com-
pression: . (b) wvariation of peak
strength s consiamt confining press-
ure with the angie of inclination of
the normal 10 the plane of weakness
10 the compression axis ().



4.6 Strength of anisotropic rock material in triaxial
compression

The corresponding value of the principal stress difference

(6,—03)mn = 2(C, + ,Uwas)([l"‘ ,uv%]]/z + Ly)
:uw — tan ¢W_

For values of [ 90°and in the 0 0 ¢, ,slipon
the plane of weakness cannot occur, and so the peak strength of
the specimen for a given value of o, must be governed by some
other mechanism, probably shear

fracture through the rock material in a direction not controlled by

the plane of weakness. 194



4.6 Strength of anisotropic rock material in triaxial
compression

Such observations led Jaeger (1960) to propose that the shear
strength parameter, ¢, is not constant but is continuously variable
with 8 or o . subsequently proposed
that both ¢, and tang, , vary with orientation according to the
empirical relations

c, = A-Blcos2(a —a_,)]
and
tan ¢,, = C — D|cos 2(c —a¢o)]m

where and /7 are constants, and &, and % yeare

o C, O, , respectively.
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4.7 Shear behaviour of discontinuities
4.7.1 Shear testing

The most commonly used method for the shear testing of
discontinuities in rock is the direct shear test. As shown in Figure
4.33.

(a) {b)
N N
Sﬂ — l H
Figure 433 Direct shear test con- s — '

figurations with (a) the shear force o
applied parallel to the discontinuity, :
(b) an inclined shear force.
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4.7 Shear behaviour of discontinuities
4.7.1 Shear testing

This type of test is commonly carried out in the

laboratory, but it may also be carried out in the field,
!’_ using a portable shear box to test discontinuities

contained in pieces of drill core or as an in situ

test on samples of larger size. Methods of preparing

samples and carrying out these various tests are

discussed by the ), Goodman

(1976) and Hoek and Bray (1981).
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4.7 Shear behaviour of discontinuities
4.7.1 Shear testing
Figure 4.33a can cause a moment to be applied about a lateral
axis on the discontinuity surface. This produces
. of the two halves of the specimen and a

—_ over the discontinuity surface.
(a) {(b)
N N
l e b
——.‘g -~ |
Figure 433 Direct shear test con- __ ~

figurations with (a) the shear force o
applied parallel to the discontinuity, :
(b) an inclined shear force.
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4.7 Shear behaviour of discontinuities

4.7.1 Shear testing

To minimise these effects, the shear force may be

inclined at an angle (usually 10° —15") to the shearing

direction as shown in Figure 4.33b.

Figure 433 Direct shear test con-
figurations with (a) the shear force
applied parallel to the discontinuity,
(b) an inclined shear force.

(a)

"

ﬁ

—

{b)
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4.7 Shear behaviour of discontinuities
4.7.1 Shear testing

This is almost always done in the case of large-scale in situ

tests. Because the mean normal stress on the
shear plane increases with the applied shear force up
to peak strength, it is not possible to carry out tests in

this configuration at very Iow normal stresses.

(a) (b)
N N
Figure 433 Direct shear test con- . Sl

figurations with (a) the shear force o
applied parallel to the discontinuity, :
(b) an inclined shear force.



4.7 Shear behaviour of discontinuities
4.7.1 Shear testing

Undrained testing with the measurement of induced joint water

_";ressures, IS generally using the shear box.
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4.7 Shear behaviour of discontinuities
4.7.1 Shear testing

The triaxial cell is sometimes used to investigate the shear
behaviour of discontinuities. Specimens are prepared from
cores containing discontinuities inclined at 25" — 40°to

the specimen axis.

MT ml © l | @ 1
— r— ==

RN
T2 20

Figure 434 Discontinuity shear
testing in a triaxial cell (after Jacger
and Rosengren, 1969).
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4.7 Shear behaviour of discontinuities
4.7.1 Shear testing

The triaxial cell is well suited to testing discontinuities in the

!'- presence of water. Tests may be either drained or undrained,

preferably with a known level of joint water pressure being
imposed

and maintained throughout the test.

(b) () (

T %
Wb B L
LT

Figure 434 Discontinuity shear
testing in a triaxial cell (after Jacger
and Rosengren, 1969).
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4.7 Shear behaviour of discontinuities
4.7.1 Shear testing

If relative shear displacement of the two parts of the specimen
IS to occur, there must be lateral as well as axial relative
. translation.

o

1 (5)1 1 | 1
gy A =
g e
LT T |

Figure 434 Discontinuity shear
testing in a triaxial cell (after Jacger
and Rosengren, 1969).

oy
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4.7 Shear behaviour of discontinuities
4.7.1 Shear testing

A spherical seat is used in the system, axial displacement
causes the configuration

. to change to that of Figure 4.34b, which is clearly
== unsatisfactory.

o

1 (b)l l | 1
gy A =
g e
LT T |

oy

Figure 434 Discontinuity shear
testing in a triaxial cell (after Jacger
and Rosengren, 1969).
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4.7 Shear behaviour of discontinuities
4.7.1 Shear testing

Two spherical seats allows full contact to be maintained over
the sliding surfaces, but the area of contact changes and

!'-rictional and lateral forces are introduced at the seats.
( (b)

o

1 | l - 1
— fq E
T T ‘

Figure 434 Discontinuity shear
testing in a triaxial cell (after Jacger
and Rosengren, 1969).

oy
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4.7 Shear behaviour of discontinuities
4.7.1 Shear testing

Figure 4.34d illustrates the most satisfactory method of ensuring
that the lateral component of translation can occur freely and
. that contact of the discontinuity surfaces is maintained. Pairs of
hardened steel discs are inserted between the platens and either
— end of the specimen. No spherical seats are used.

o

1 (b)l l | 1

gy A =
xRN

LT T |

Figure 434 Discontinuity shear o
testing in a triaxial cell (after Jacger !
and Rosengren, 1969).



4.7.2 Influence of surface roughness on shear
strength

Shear tests carried out on smooth, clean discontinuity surfaces at
constant normal stress generally give shear stress-shear
l displacement curves of the type shown

= in Figure 4.35.

Carrara Marble
1000~

Bowral Trachyte

sandstone

Shear stress (kPa)
g
—

T
Figure 435 Shear stress-shear 2001~
displacement curves for ground sur-
faces tested with a constant normal
‘stress of 1.0 MPa (after Jaeger, ol—1 L ] !

sl..

1971). 0 5 10 15
Shear displacement (mm) 208



