4.5.2 Coulomb's shear strength criterion
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o =45+ — 65
2
o = 61;"3 _ "1;"3 cos(7 — 2x 65) = 15MPa

r = "1;63 sin( — 2x 65) = 32.56MPa
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4.5.3 Griffith crack theory

Griffith ( 1921 ) postulated that fracture of brittle materials,
such as steel and glass, is initiated at tensile stress
concentrations at the tips of minute, thin cracks (now
referred to as Griffith cracks) distributed throughout an
otherwise isotropic, elastic material. Griffith based his
determination of the conditions under which a crack

would extend off his energy instability concept:

O
— -W,) <0
8C (Wd e)

where c Is a crack length parameter, W, Is the elastic strain
energy stored around the crack and W, is the surface energy
of the crack surfaces.
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4.5.3 Griffith crack theory

(a)
pre-existing
crack

crack exiension

(b)

aat\ o
. ‘“- -
-
LR v :""“-

-2

-
Ry P~

Figure 4.25 Extension of a pre-
existing crack. (a) Griffith's hypo-
thesis. (b) the actual case for rock.

2Ea

T C

o2 (4.19)

_ It is important to note that it is the
surface energy, a , which is the
fundamental material property involved
here. In this case, it is preferable to treat
oo @s an apparent surface energy to
distinguish it from the true surface
energy which may have a significantly

smaller value.



4.5.3 Griffith crack theory

Griffith (1924) extended his theory to

| 1 | the case of applied compressive
. P = stresses. Neglecting the influence of
— «=  friction on the cracks which will close
_: ? I under compression, and assuming that
T l T the elliptical crack will propagate from

f;g:;:n:f:mp?:;i?;: cack model  the points of maximum tensile stress
concentration (P in Figure 4.26).
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L1l
TIrTT
Griffith obtained the following criterion for crack extension in
plane compression:

B (6,-0,) -8T,(c,+0,)=0 if 6,+30,>0
- c,+T,=0 1If 0,+30,<0

T 11 1

4.5.3 Griffith crack theory

(4.20)

where Ty is the uniaxial tensile strength of the uncracked material
(a positive number).

This criterion can also be expressed in terms of the shear
stress, ¢ , and the normal stress, 0,,, acting on the plane
containing the major axis of the crack:

Té = 4T, (o, +T,) (4.21)
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Griffith crack theory

L(Gl—GZ)Z—STO(Gl-I—GZ):O If 0,+30,>0 (6)

c,+1,=0 If 6,+30,<0

o114

(o~ =

8To 8Tp (o) + 02)

where T, is the uniaxial tensile
strength of the uncracked
material (a positive number).
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Griffith crack theory

The function of Mohr circle is :

!'_ tf 4 (0, ~ TR = (P02

O, tO O,—0O
o =21 2 =217 %2

" 2 " 2

Substituting for Eq.(8) in EqQ.(6) gives

2
T, =4l ,x0o,

(7)

(8)

9)
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Griffith crack theory
f=1°+(c,~-0,.) -4T,x0o, (10)

of

B
0o,

gives c,=0,+2T, (11)

Substituting for Eq.(11) in Eq.(7) gives

T2+ 4T,° = 4T, x (o, + 2T,) (12)
Eq.(12) reduces to

(13)
T° = 4T, x (o, +T,)
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4.5.3 Griffith crack theory

The envelopes given by equations 4.20 and 4.21 are
shown in Figure 4.27.

oA

(o= =
8Tq (o) + 032)

8To T = 4Tp (o + To)

Figure 4.27 Griffith envelopes for
crack extension in plane.compres-
sion.




4.5.3 Griffith crack theory

Accordingly, a number of modifications to Griffith's
solution were introduced (see Paterson, 1978 and
!’_ Jaeger and Cook, 1979 for details).
These criteria do not find practical use today.
However, Griffith's energy instability concept has
formed the basis of the new science of fracture
mechanics which is being applied increasingly to
the study of the fracture of rock.
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4.5.3 Griffith crack theory

The use of this approach with an apparent surface
energy taken as the basic material property has
been able to explain many observations of apparent
size effects and to reconcile the results of different

types of indirect tension test on rock.



4.5.4 Empirical criteria

Bieniawski (1974) found that the peak triaxial

strengths of a range of rock types were well
represented by the criterion

=1+ A( ) (4.23)
or Gc
Tm _ 0.1+ B(Zm)e (4.24)
GC GC

where 7 :%(61—03) and o, 2%(614-(73) .
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1+A( ) m 0.1+ B(Zm)

Gc O O

4.5.4 Empirical criteria
Bieniawski found that, for the range of rock types
tested, k= 0.75and c¢=0.90.
Both A and B take relatively narrow ranges for the

rock types tested. (Two parameters model)

Table 4.1 Constants in Bieniawski's empirical strength
criterion (after Bieniawski, 1974).

Rock type A B
norite 5.0 0.8
quartzite 4.5 0.78
sandstone 4.0 0.75
siltstone 3.0 0.70
mudstione 30 0.70
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4.5.4 Empirical criteria

Hoek and Brown (1980):

g ﬁ — 03 4+ (m _|_ 3)1/2 (425)
O . O . O .

where M varies with rock type. $=1.0 for intact rock. Analysis
of published strength data suggests that m increases with rock
type in the following general way:
(@) m= 7/ for carbonate rocks with well developed
crystal cleavage (dolomite,limestone, marble);
(b) M =10 for lithofied argillaceous rocks

(mudstone, siitstone, shale, slate); 164



o] o o
1 _ -3 _|_(m_3_|_1_0)3/2
i o O O O
4.5.4 Empirical criteria c c c

(c¢) M = 15 for arenaceous rocks(’ﬁj;@frffl[) with strong
crystals and poorly developed crystal cleavage
(sandstone, quartzite);

(d) m = 17/ for fine-grained polyminerallic igneous
crystalline rocks ( andesite, dolerite, diabase,
rhyolite );

(e) m =~ 25for coarse-grained polyminerallic

igneous and metamorphic rocks ( amphibolite,
gabbro, gneiss, granite, norite, quartz-diorite).
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4.5.4 Empirical criteria
Normalised peak strength envelopes for sandstones

¢|’0’t

166

Figure 428 Nommalised peak
strength envelope for sandstones

(after Hoek and Brown, 1980).
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4.5.4 Empirical criteria O, O O

Normalised peak strength envelopes for granites

if
E:
E
:
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Generalised Hoek-Brown criterion

For join rock m o, O
or jointed rock masses Oy _ 3+(m 3 11.0)¥2
GC GC GC
a
r 63
0, =03+0y4 M,—+5S (1)
O

ci

where Gl'and Gé are the maximum and minimum effective stress at failure,
IMyis the value of the Hoek-Brown constant for the rock mass,
S and aare constants which depend upon the rock mass characteristics

O is the uniaxial compressive strength of the intact rock
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Generalised Hoek-Brown criterion N
GiIGé-I—GC{IT!)G?’-I—S]

c

For the intact rock pieces that make up the rock
mass Eq.(1) simplifies to :

05
!/
o

o, =03+04 M —>+1 (2)

Gci

where Ois the uniaxial compressive strength of the intact rock pieces

Mis the value of the Hoek-Brown constant for the intact rock
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Generalised Hoek-Brown criterion ]
Gl’=0§+6ci£rnoc3+SJ
O

ci

+

= The Geological Strength Index (GSI)(Hoek,1995)
GS3 —100]

n-mecf S

For GSI > 25

s:exp(GSI;mOj a=05

For GSI <25
GS (3)

s=0 , a=065—-——
200
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Table 8.4: Estimation of constants m, /m; s, a, deformation modujus‘Z and the Poisson'’s ratio v for the Generalised Hoek-
Brown failure criterion based upon rock mass structure and discontifitity sutface‘conditions. Note that the values given in
this table are for an undisturbed rock mass. : rro Ay oe

GENERALISED HOEK-BROWN CRITERION . -
g £3 2
: NN
L o, s o, °s 8
O,'=03'+0, |m,——+s P 2 2 se k]
o, o, T g o tE -
@ 3 = 2§ 2 -
!: " w
B . . a F - = 'E [ =4 'E B
. o' = major principal effective stress at failure > ; e s g 8 g
S o '
g3’ = minor principal effective stress at failure 8 g E w© sc ®
- o = o g 2
O, = uniaxial compressive strength of intact = © % > 5 =5
pieces of rock 8 g g £ s S
. w Qs = o FEn e
my, s and a are constants which depend on O O £ b a8 E ;
the composition, structure and surface = O =] = E 5 SE gg
conditions of the rock mass o o 2 % § £ EQE '
=2 > o< &
® | 85 | 85 | =82 3255| &as
> = < E 3 =
STRUCTURE o23 |fwa|ande)| 55
m/m,| 0.60 0.40 0.26 0.16 0.08
BLOCKY -very well interiocked s 00120 03322 03‘.!;5 IIJDOgG 8%04
undisturbed rock mass consisting a . i : -
| of cubical blocks formed by three R zgggo %%0_,? A
orthogonal discontinuity sets G\:Sf 85 75 62 48
; ; m,/m, 0.40 0.29 0.16 0.11 0.07
VERY BLOCKY-interlocked, partially ™™ | 5005 | 9521 | 0.003 | 0.001 0
dlS“l,I..!I‘bEd rock mass with = 0.5 0.5 0.5 0.5 053
multifaceted angular blocks formed E 40,000 | 24,000 9,000 5,000 | 2,500
by four or more discontinuity sets v 0.2 0.25 0.25 0.25 3
' GSI 75 65 48 38 25
i 8 : s 0.012 0.004 0.001 0 1]
ta_ulted wuh many intersecting e 0.5 0.5 0.5 0.5 0.55
discontinuities forming angular E 18,000 | 10,000 6,000 3,000 2,000
blocks 5 0.25 0.25 0.25 0.3 0.3
: GSI 60 50 40 30 20
m/m, | 017 0.12 0.08 0.06 0.04
CRUSHED-poorly interlocked, s 0&?24 Db0g1 005 0?’;5 0%0
heavily broken rock mass with a a - v - - .
mixture of angular and rounded E. | 10,000 | 6,000 | 3,000 | 2,000 1,000
v 0.25 0.25 0.3 0.3 0.3
blocks GSI 50 40 30 20 10

Note 1: The in situ deformation modulus E,, is calculated from Equation 4.7 (page 47, Chapter 4). Units of E,, are MPa.



4.5.5 Yield criteria based on plasticity theory

The total strain increment {8} is the sum of the elastic and
plastic strain increments

U ] e

A plastic potential function, Q({0 }) , is defined such that

: 50
{8 p}:i{g} (4.26)

where A is a non-negative constant of proportionality which may
vary throughout the loading history.
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4.5.5 Yield criteria based on plasticity theory

Thus, from the incremental form of equation 2.38 and equations
4.25 and 4.26

Vel e

where [D]is the elasticity matrix.

It is also necessary to be able to define the stress states at which
yield will occur and plastic deformation will be initiated. For this
purpose, a yield function, F ({c }) , is defined such that F =0 at

yield. If Q = F , the flow law is said to be associated.
173



4.5.5 Yield criteria based on plasticity theory

In this case, the vectors of {o }and {g p} are orthogonal as
illustrated in Figure 4.30. This is known as the normality condition.

‘ strain increment vector
|

01,€1

yield envelope

Figure 430 The normality condi-
tion of the associated flow rule. O3,E3

1/74



4.5.5 Yield criteria based on plasticity theory

For isotropic hardening and associated flow, elastoplastic stress
and increments may be related by

N the equation . .
= et
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4.5.5 Yield criteria based on plasticity theory

In which

where Kis a hardening parameter such that yielding occurs

when
oF ' ()] oF
dF =4 — +—=0
{aa} {G} oK
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4.5.5 Yield criteria based on plasticity theory

The concepts of associated plastic flow were developed for

perfectly plastic and strain-hardening metals using yield functions
' such as those of Tresca and von Mises which are independent of
~ the hydrostatic component of stress (Hill.1950).

Although these concepts have been found to apply to some
geological materials, it cannot be assumed that they will apply to
pressure-sensitive materials such as

rocks in which brittle fracture and dilatancy typically occur
(Rudnicki and Rice,1975).
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4.5.5 Yield criteria based on plasticity theory

These functions are often of the form F(1,,J,)=0
where |,is the first invariant of the stress tensor and

_ J, is the second invariant of the deviator stress tensor (section
2.4), i.e.

1
J,= (St + S0+ D)

N %[(01_62)2 + (o, _63)2 + (03 _61)2]
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4.5.5 Yield criteria based on plasticity theory

More complex functions also include the third invariant of the
deviator stress tensor J; = $S,S; . For example, Desai and
Salami (1987) were able to obtain excellent fits to peak strength
~ (assumed synonymous with yield) and stress-strain data for a
sandstone, a granite and a dolomite using the yield function

a Jysy”
SN A
0 2

where o , f, m and n are material parameters and

a, is one unit of stress.
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