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4.5.2 Coulomb's shear strength criterion

某一岩層，強度受莫耳－庫倫((Mohr－Coulomb)破壞準則控制，其
凝聚力C=20MPa，內摩擦角ψ=40o，今受到最大主應力為100Mpa，最小
主應力為15MPa的應力作用。

(三)破壞時，斷裂面上的有效正應力與剪應力分別是多少？
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4.5.3 Griffith crack theory

Griffith ( 1921 ) postulated that fracture of brittle materials,

such as steel and glass, is initiated at tensile stress

concentrations at the tips of minute, thin cracks (now

referred to as Griffith cracks) distributed throughout an

otherwise isotropic, elastic material. Griffith based his

determination of the conditions under which a crack

would extend off his energy instability concept:

0)( 



ed WW
c (4.18)

where c is a crack length parameter, is the elastic strain
energy stored around the crack and is the surface energy
of the crack surfaces.

dW
eW
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4.5.3 Griffith crack theory

It is important to note that it is the

surface energy, , which is the

fundamental material property involved

here. In this case, it is preferable to treat

as an apparent surface energy to

distinguish it from the true surface

energy which may have a significantly

smaller value.

c
E




2

 (4.19)


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4.5.3 Griffith crack theory

Griffith (1924) extended his theory to

the case of applied compressive

stresses. Neglecting the influence of

friction on the cracks which will close

under compression, and assuming that

the elliptical crack will propagate from

the points of maximum tensile stress

concentration (P in Figure 4.26).
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4.5.3 Griffith crack theory

Griffith obtained the following criterion for crack extension in
plane compression:

where is the uniaxial tensile strength of the uncracked material
(a positive number).

This criterion can also be expressed in terms of the shear
stress, , and the normal stress, , acting on the plane
containing the major axis of the crack:

(4.20)

(4.21)
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Griffith crack theory

where is the uniaxial tensile
strength of the uncracked
material (a positive number).
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Griffith crack theory

The function of Mohr circle is :
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Substituting for Eq.(8) in Eq.(6) gives
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Griffith crack theory

mmn Tf   0
22 4)( (10)

0



m

f


(13)

gives

)2(44 00
2

0
2 TTT n  

(11)02Tnm 

Substituting for Eq.(11) in Eq.(7) gives
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4.5.3 Griffith crack theory

The envelopes given by equations 4.20 and 4.21 are

shown in Figure 4.27.
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4.5.3 Griffith crack theory

Accordingly, a number of modifications to Griffith's

solution were introduced (see Paterson, 1978 and

Jaeger and Cook, 1979 for details).

These criteria do not find practical use today.

However, Griffith's energy instability concept has

formed the basis of the new science of fracture

mechanics which is being applied increasingly to

the study of the fracture of rock.
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4.5.3 Griffith crack theory

The use of this approach with an apparent surface

energy taken as the basic material property has

been able to explain many observations of apparent

size effects and to reconcile the results of different

types of indirect tension test on rock.
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4.5.4 Empirical criteria

Bieniawski (1974) found that the peak triaxial

strengths of a range of rock types were well

represented by the criterion

or

where and .

(4.24)
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4.5.4 Empirical criteria

Bieniawski found that, for the range of rock types

tested, and .

Both A and B take relatively narrow ranges for the

rock types tested. (Two parameters model)
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4.5.4 Empirical criteria

Hoek and Brown (1980):

where varies with rock type. S=1.0 for intact rock. Analysis

of published strength data suggests that increases with rock

type in the following general way:

(a) for carbonate rocks with well developed

crystal cleavage (dolomite,limestone, marble);

(b) for lithofied argillaceous rocks

(mudstone, siitstone, shale, slate);

7m
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4.5.4 Empirical criteria

(c) for arenaceous rocks(砂質岩) with strong

crystals and poorly developed crystal cleavage

(sandstone, quartzite);

(d) for fine-grained polyminerallic igneous

crystalline rocks ( andesite, dolerite, diabase,

rhyolite );

(e) for coarse-grained polyminerallic

igneous and metamorphic rocks ( amphibolite,

gabbro, gneiss, granite, norite, quartz-diorite).
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4.5.4 Empirical criteria

Normalised peak strength envelopes for sandstones
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4.5.4 Empirical criteria

Normalised peak strength envelopes for granites
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Generalised Hoek-Brown criterion
For jointed rock masses

a
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where and are the maximum and minimum effective stress at failure,

is the value of the Hoek-Brown constant for the rock mass,

and are constants which depend upon the rock mass characteristics

is the uniaxial compressive strength of the intact rock
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Generalised Hoek-Brown criterion
For the intact rock
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where is the uniaxial compressive strength of the intact rock pieces

is the value of the Hoek-Brown constant for the intact rockim
ci

For the intact rock pieces that make up the rock

mass Eq.(1) simplifies to :
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Generalised Hoek-Brown criterion
Geological Strength Index

 The Geological Strength Index (GSI)(Hoek,1995)
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4.5.5 Yield criteria based on plasticity theory

The total strain increment is the sum of the elastic and
plastic strain increments

A plastic potential function, , is defined such that

where is a non-negative constant of proportionality which may
vary throughout the loading history.

(4.25)
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4.5.5 Yield criteria based on plasticity theory

Thus, from the incremental form of equation 2.38 and equations
4.25 and 4.26

where is the elasticity matrix.

It is also necessary to be able to define the stress states at which
yield will occur and plastic deformation will be initiated. For this
purpose, a yield function, , is defined such that at
yield. If , the flow law is said to be associated.
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4.5.5 Yield criteria based on plasticity theory

In this case, the vectors of and are orthogonal as
illustrated in Figure 4.30. This is known as the normality condition.
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4.5.5 Yield criteria based on plasticity theory

For isotropic hardening and associated flow, elastoplastic stress
and increments may be related by

the equation
 
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4.5.5 Yield criteria based on plasticity theory

where is a hardening parameter such that yielding occurs
when

In which
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4.5.5 Yield criteria based on plasticity theory

The concepts of associated plastic flow were developed for

perfectly plastic and strain-hardening metals using yield functions

such as those of Tresca and von Mises which are independent of

the hydrostatic component of stress (Hill.1950).

Although these concepts have been found to apply to some

geological materials, it cannot be assumed that they will apply to

pressure-sensitive materials such as

rocks in which brittle fracture and dilatancy typically occur

(Rudnicki and Rice,1975).
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4.5.5 Yield criteria based on plasticity theory

These functions are often of the form

where is the first invariant of the stress tensor and

is the second invariant of the deviator stress tensor (section

2.4), i.e.
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4.5.5 Yield criteria based on plasticity theory

More complex functions also include the third invariant of the

deviator stress tensor . For example, Desai and

Salami (1987) were able to obtain excellent fits to peak strength

(assumed synonymous with yield) and stress-strain data for a

sandstone, a granite and a dolomite using the yield function

where , , and are material parameters and

is one unit of stress.
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