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Brazilian Test (Diametral Compression of Discs)
The stress component along YY' (o, )
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where O,: stress component normal to the loading diameter
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O, ! stress component along the loading diameter
P : applied force
I' : distance from the center of disc
t : thickness of the disc
2. angular distance over which P is assumed to be
distributed radially
R: radius of the disc
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Brazilian Test (Diametral Compression of Discs)
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Brazilian Test (Diametral Compression of Discs)
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Brazilian Test (Diametral Compression of Discs)

has been found to give tensile
!'_ strength higher than that of
, probably owing to the effect of fissures.

Short fissures weaken a direct tension
specimen more severely than they weaken
a splitting tension specimen. The ratio has
been found to vary from 1 to more than ten
as length of preexisting fissures grows
larger.
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Brazilian Test (Diametral Compression of Discs)
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Brazilian Test (Diametral Compression of Discs)

i""‘

By EEEd o B B N RS R I P

E'IJ[EwP? [ R A R ) £

__ 2P [ sin 81 cosfy sin 92 cosd, 2P
a -_ —
* nt r ra wde
o= ZP 008301 C05392 _ 2P
y | . 14 I Iz ﬂ'dt
L 2P coszal sindy coszez siné,
Txy = 1r£ .
1 )

[AFECE > &
StE® ( BrazilianTest)

i

SRS T 1_.1@@3:@5&, Sy

 Siagitltla > bfflV o 0 o, 0 T fY

(= RPN R EEAVIR TR - (2057)

107



Brazilian Test (Diametral Compression of Discs)
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Brazilian Test (Diametral Compression of Discs)

Read
l(l).Vutukuri, Lama and Saluja, vol.1, p.15~111 (1974).
= (2).Jaeger and Cook, “Fundamental of Rock Mechanics”
P.169~170 and p.258~260 (1979).
(3).Brown, “ISRM Suggested Methods”, p.120~121 (1981).
(4).ASTM D3967-86 “Standard Method for Spliting

Tensile Strength of Intact Rock Core Specimens”.
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4.4 Behaviour of isotropic rock material in multiaxial

compression
4.4.1 Types of multiaxial compression test

Biaxial compression ( 0. = 0, , 05 =0 )

Triaxial compression ( . ~ ©> = 95 ) Conventional
Triaxial

Polyaxial compression (o, > o, > 0,)
True Triaxial
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4.4.2 Biaxial compression ( )

Biaxial compression tests are carried out by applying different
normal stresses to two pairs of faces of a cube, plate or
rectangular prism of rock.
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4.4.2 Biaxial compression ( )

The great difficulty with such tests is that the end effects
described in section 4.3.3 exert an even greater influence on the

stress distribution within the specimen than in the case of
== uniaxial compression. For

this reason, rather than medium loading is preferred.
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4.4.2 Biaxial compression ( )

Brown (1974) carried out a series of biaxial compression tests

!|_ on 76 mm square by 25 mm thick plates of Wombeyan Marble
which were loaded on their smaller faces through (a) 76 mm
X 25 mm solid steel platens, and (b) brush platens made from
3.2 mm square steel pins.
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4.4.2 Biaxial compression ( )

Figure 4.15 shows the peak strength envelopes obtained
in tests carried out at constant ratios. The data are
normalised with respect to the uniaxial compressive
strength of the plates o. = 66 MPa.

2.0

oyl
—
o
4

Figure 4.15 Biaxial compression l

test results for Wombeyan Marble o - 1.0
(afier Brown, 1974). oo,



4.4.2 Biaxial compression ( )

This was attributed to the influence of end effects. When the
brush platens were used, the maximum measured increase in
l peak strength over o, was For

- 0,=0,; ,ho strength increase. The practical
consequence of these results is that, for this rock type,
the 'strengthening’ effect of the

can be neglected so that the uniaxial compressive
strength, O , should be used as the rock material

strength whenever ©O3;= 0. This slightly conservative conclusion
is likely to apply to a wide range of rock types.
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4.4.3 Triaxial compression ( )

!
- -

— seal

specimen

rubber
jacket

<«— confining
pressure

Figure 4.16 Elements of a conven-

tional triaxial testing apparatus.

The specimen is placed inside a pressure vessel
(Figures 4.16 and 4.17) and a fluid

pressure, O3, is applied to its surface. A jacket,
usually made of a rubber compound, is used to
isolate the specimen from the confining fluid
which is usually oil. The axial stress, o, is
applied to the specimen via a ram passing
through a bush in the top of the

cell and hardened steel end caps.
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4.4.3 Triaxial compression (

Figure 4.17 Cut-away view of the
triaxial cell designed by Hoek and
Franklin (1968). Because this cell
does nol require drainage belween
tests, it is well suited to carrying out
large numbers of tests quickly.

hardened and ground
steel spherical seats

clearance gap

mild steel cell body

rock specimen

?I — oil inlet
strain gauges

——rubber sealing sleeve
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4.4.3 Triaxial compression ( )

Axial deformation of the specimen may be most
!’_ conveniently monitored by linear variable differential
transformers (LVDTs) mounted the
cell, but preferably inside. Local axial and
circumferential strains may be measured by electric
resistance strain gauges attached to the surface of

the specimen (Figure 4.17).
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4.4.3 Triaxial compression (

#
T = 10.0 MPa
oy = 5.0 MPa
20
l oy = 2.0 MPa
w/ e
g o3 0 1.5 70 s
Axial strain, ¢, = ¢; {%)
f/
3 = 2.0 MPs =
/ -
./d‘)- 5.0 MPa
N ='10.0 MPa

Figure 4,18 Resulis of triaxial

compression tests on an oolitic lime- 0.4
sione with volumetric sirain meas-

urement (afier Ellion, 1982).

€ (%)

)

Figure 4.18 shows some
results obtained using such a
system in tests carried out at
three different confining
pressures on specimens of
an oolitic limestone. An
important feature of the
behaviour of rock material in
triaxial compression is
illustrated by Fig4.18.
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4.4.3 Triaxial compression ( )

oy — o3 (MPa)
-

H
T = 10.0 MPa
oy = 5.0 MPa
20
l oy = 2.0 MPa
w/ e
g o3 0 1.5 70 s
Axial strain, ¢, = ¢; (%)
f/
o3 = 2.0 MPs =
/ -
./d‘)ﬂ 5.0 MPa
= '10.0 MPa

Figure 4,18 Resulis of triaxial

compression tests on an oolitic lime- 0.4
sione with volumetric sirain meas-

urement (afier Ellion, 1982).

€ (%)

When the specimen is initially
loaded it compresses, but a
point is soon reached,
generally before the peak of
the axial stress-axial strain
curve, at which the specimen
begins to

as a result of internal
fracturing.
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4.4.3 Triaxial compression (

oy — o3 (MPa)
-

H
T = 10.0 MPa
oy = 5.0 MPa
20
l oy = 2.0 MPa
w/ e
g o3 0 1.5 70 s
Axial strain, ¢, = ¢; (%)
f/
o3 = 2.0 MPs =
i ‘/
./d‘)ﬂ 5.0 MPa
N = '10.0 MPa

Figure 4,18 Resulis of triaxial

compression tests on an oolitic lime- 0.4
sione with volumetric sirain meas-

urement (afier Ellion, 1982).

€ (%)

)

Shortly after the peak
strength is reached, the
net volumetric strain of
the specimen becomes

dilational. Dilation continues
in the post-peak range. The

amount of dilation decreases
with increasing confining

pressure.
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4.4.3 Triaxial compression ( )

. _—r—1 1 At very high confining
%, A e Pressures, often outside
& / L the range of engineering
/ B interest,
_o .J"’ a8 with
“ ——1 == the volumetric strains
TCM /;{ remaining contractile
e I L R throughout the test.

«, (%)
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4.4.3 Triaxial compression ( )

Figure 4.19 illustrates a number of other important
features of the behaviour of rock in triaxial compression.

Figure 419 Complcie axial stress

—ax] - SFEn curves obdsioed an |
traxial comprEsTion tesis om Teo- a0 .
on dhe curves (afier Wawernssk and 34.5 MPa
Fasrbura, 19700 —y //"" —

i ”

- i ; 7.6 MPa

g L,(K_ﬂmm

=

Z w0 ‘w’;‘ i153.E MPa

A5 MPa "
4] (NT-] 1 ] 0.3 oA 0.9 050 13 7]
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4.4.3 Triaxial compression (

These and similar data for other rocks show that,
with increasing confining pressure,

(a) the peak strength increases;

(b) there is a transition from typically brittle to
fully ductile behaviour with the introduction
of plastic mechanisms of deformation
including cataclastic flow and grain-sliding

effects;

Figure 419 Complete aajal stress
sl s curves obiaiotd in
ratial compression tesis o Teo-
nesee Muble ® the confining
pressures mdicaied by the oumbers
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4.4.3 Triaxial compression ( )

These and similar data for other rocks show that, with
increasing confining pressure,

. (c) the region incorporating the peak of the (0 - &€,)
—_— curve flattens and widens;
(d) the post-peak drop in stress to the residual

strength reduces and disappears at high e e
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4.4.3 Triaxial compression ( )

The confining pressure at which the post-peak

!'- reduction in strength disappears and the behaviour
becomes fully ductile ( 93 = 48.3 MPa in Figure 4.19),
IS known as the

and varies with rock type.
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4.4.3 Triaxial compression ( )

=
B
=
— 10} 0
b -
-
t 100 41 .4
]
2
; 50 55.2
e 62.1
<
- 69.0

L
1.0 2.0
Axial strain, ¢; = €, (%)

Figure 4.20 Effect of pore press-
ure (given in MPa by the numbers
on the curves) on the stress—strain
behaviour of a limestone tested at a
constant confining pressure of 69
MPa (after Robinson, 1959).

The influence of pore-water pressure
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4.4.3 Triaxial compression ( )

Brace and Martin (1968) conducted triaxial

rocks of low porosity (0.001- 0.03) at axial strain rates
of 102 -10% s*. They found that the classical
effective stress law held only when the strain rate

ﬂ compression tests on a variety of crystalline silicate

was less than some critical value which depended on
the permeability of the rock, the viscosity of the pore
fluid and the specimen geometry. At strain rates

higher than the critical, static equilibrium could not be
achieved throughout the specimen. 130



4.4.4 Polyaxial compression ( )

These tests may be carried out on cubes or
rectangular prisms of rock with different normal

ﬂ stresses being applied to each pair of opposite faces.
The results of polyaxiai compression tests on
prismatic specimens are often conflicting, but
generally indicate some influence of the

, 05, on stress-strain behaviour.
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4.4.4 Polyaxial compression ( )

Generally, the peak strength increases with

!'- increasing o, for constant o5, but the effect is not as
great as that caused by increasing o, by a similar
amount (Paterson, 1978). However, doubts must
remain about the uniformity of the applied stresses

in these tests and the results should be interpreted with great
care.
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A test of considerable relevance in this regard is the

triaxial extension test which is carried out in a triaxial
ﬂcell with the confining pressure, o, ,greater than

the axial stress, 9a. The test may be commenced at

C, =0, with 0,4, being progressively reduced so that

o, =0,=0,>0,=05 . With modern servo-controlled
testing machines, almost any desired total or effective

stress path can be followed within the limitations imposed by
the axisymmetric configuration of the triaxial cell.
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oy - oy (MPa)

Figure 4.21 Influence of stress

1500

1000

4.4.5 Influence of stress path
Swanson and Brown (1971) investigated
Key
A upen o continis.— the effect of stress path on the peak

B iypical riional
Harpel i

c mamnaseamen  Strength of a granite and a quartz diorite.

no. 26

They found that, for both rock types,
the peak strengths in all tests fell on the

A

- J-/4--¢-, ~ same envelope (Figure 4.21 for Westerly

L Granite) irrespective of stress path. They
also found that the onset of dilatancy,

i : described in section 4.4.3, is stress-path
-+ independent. Similarly, Elliott (1982)
found the yield locus of a high-porosity,

for Westeny Granite aer swanenn 0ONitiC limestone to be stress-path

and Brown, 1971).

independent.
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4.5 Strength criteria for isotropic rock material
4.5.1 Types of strength criterion

Peak Strength Criterion : A relation between
stress components which will permit the peak

!'- strengths developed under various stress
combinations to be predicted.

Residual Strength Criterion : be used to predict residual
strengths under varying stress conditions.

Yield Criterion : A relation between stress components
which is satisfied at the onset of permanent deformation.

Strength and yield criteria are best written in effective stress
form
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4.5 Strength criteria for isotropic rock material
4.5.1 Types of strength criterion

The general form of the peak strength criterion should be

c,=1(c,,0;)
This is sometimes written in terms of the shear and normal
stresses, a on a particular plane in the specimen

r=1(0,)
All of the criteria used in practice are reduced fo the form

o, = f(o;)
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4.5.2 Coulomb's shear strength criterion

S=Cc+o,tan¢ (4.11)
!'- where ¢ = cohesion and ¢ =angle of internal friction.
1 1
oc,=—(o,+0;)+ E(G1 —0,)Cc0s2p
1 . "
and T=—(0,—0,)SN2p
2 - ’
(a) a — T/ -—
ren | f
2\‘:!:::;:3 lerﬁsmm; s::ern:‘n: Z”/c o -
normal stresses, and (b) principal a3 o1 o, 3

stresses. . 137



4.5.2 Coulomb's shear strength criterion

Substitution for o, and S=7 in equation 4.11 and

rearranging gives the limiting stress condition on
—‘L any plane defined by f as

101
« A 2Cc+o,|sin 28 + tan ¢(1- cos 23 )]
O.,. =
. sin 28 —tan ¢(1+ cos 23)

(4.12)

— —

B
a

TA o1 A
C T 1
Figure 4.23 Coulomb strength - 28 //
envelopes in terms of (a) shear and - ,/
normal stresses, and (b) principal : 7 138

siresses.



_ 2C+0,[sin2p +tan ¢(1-cos 23]

o
' sin 28 —tan ¢(1+ cos2p3)
4.5.2 Coulomb's shear strength criterion

The Mohr circle construction of Figure 4.23a gives
the orientation of this critical plane as

me .

l P42

|
b
— o e
a B - T ®) o1 A
' 3
c . i

Figure 423 Coulomb strength - 28 ,/
envelopes in terms of (a) shear and g’ 1’

normal stresses, and (b) principal oy o cr: 0':3
stresses.
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_ 2C+0,[sin 28 +tan ¢(1-cos 23 )]

O
: sin 28 —tan ¢(1+ cos23)
4.5.2 Coulomb's shear strength criterion
T ¢

.4 2 .

For the critical plane, SN2 =coS¢ , coS2f =—-Sn¢
!’_ , and equation 4.12 reduces to
o - 2CCOS ¢ + 0,(1+sSn¢) (4.14)
. 1-sing

o,=0;K +2C /K
4

normal stresses, and (b) principal e - o) o, °'=3 40
stresses.




4.5.2 Coulomb's shear strength criterion

The Slopeof (b) linera equation of 0, 03

1+sin
1-sing P
Interception (4.15)
2CCO0S¢ [
(4.16)
(@) A ®) i
)
c e u
e e e za
m:u:m. and ((b)) principal — = o1 on “ o

stresses. . 141



4.5.2 Coulomb's shear strength criterion

If the Coulomb envelope shown in Figure 4.23b is
extrapolated to 91 = 0 , it will intersect the O3 axis at an
!’_ apparent value of uniaxial tensile strength of the

material given by

Figure 4.23 Coulomb strength
envelopes in terms of (a) shear and
normal stresses, and (b) principal
stresses.

~ 2ccosg

_ (4.17)
1+sing

Ot
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4.5.2 Coulomb's shear strength criterion

A tensile cutoff is usually applied at a selected value of
uniaxiai tensile stress , as shown in Figure 4.24. For practical
purposes, it is prudent to put

T,=0

o) 4

T A r
X

Figure 424 Coulomb strength en- —-1/ 3 (

velopes with a tensile cut-off. To Tn To o3
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4.5.2 Coulomb's shear strength criterion

Although it is widely used, Coulomb's criterion is not a particularly
satisfactory peak strength criterion for rock material. The reasons
for this are:

(a) It implies that a major shear fracture exists at
peak strength. Observations such as those made
by Wawersik and Fairhurst (1970) show that this is

not always the case.

(b) It implies a direction of shear failure which does

not always agree with experimental observations.

(c) Experimental peak strength envelopes are
generally non-linear. They can be considered

linear only over limited ranges of ¢,or 05 .



4.5.2 Coulomb's shear strength criterion

A
T

/bad =20 =90+ ¢

9:45+£
2
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4.5.2 Coulomb's shear strength criterion

A
T

g 20
M C
f @) e a b >
03 01 On
ad .
fa

O,+0,4

fa= fO+Oa =ccot ¢ +
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4.5.2 Coulomb's shear strength criterion

A
T

g 20
M ¢ >
f O Ge a g 0
01703
ad = 5
. (5)
Substituting for Eq.(4) and
Eq.(5) in EqQ.(3) gives O,— 04
Sin ¢ = - (6)
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4.5.2 Coulomb's shear strength criterion

A

26

Eq.(6) reduces to Gl:as(lJrS!nqﬁ)JrzC\/(lJrS!n gb) (7)
1-sn¢ 1-sn¢

. 0,=0, tan2(45+%)+ 2ctan(45+%) (8)

or

o,=0,K, +2C, /K, (9)
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4.5.2 Coulomb's shear strength criterion

*- Pl TR f@((m ohr — Coulomb)B ] » X
EESR]ICI20M Pa » [P |Bsiger| ¢ =400 » 4 0Z[H A2 fg)55100Mpa » -]
= s E15M Pafiviis s (25 ] o

(- NPT e PR SR RAREp -

I = -
—3n

=15%x4.6+2x20x+/4.6
=154 . 8MPa > 100 MPa
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4.5.2 Coulomb's shear strength criterion

3 fg[@‘ Zﬁ@“‘%ﬁ' —Hifimy ((Mohr—Coulomb)’@%*E'UﬂﬁU » El
F%?%é IC=20MPa » [ |/BE{EEE| ¢) 4%) » SR EA 2 e 100Mpa’£§J

=R 15MPaer%;J,ﬁ:ﬂJ
COB= PRS- PR - S
TR J ik

(c,-U;)=(o;-U;)K +2c,/K|

(100 -U.) = (15-U,)4.6+ 2x 20x /4.6

3.6xU, =54.78

U, =15.22MPa
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4.5.2 Coulomb's shear strength criterion

*- Pl TR f@((m ohr — Coulomb)B ] » X
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(5 Yt » SRR Y T e ST LRL %D

o =45+ — 65
2
o = 61;"3 _ "1;"3 cos(7 — 2x 65) = 15MPa

r = "1;63 sin( — 2x 65) = 32.56MPa
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